-

w

| O R

m

i

BOLT BERANTEHK ANTD NEWMAN INC

C ONS5SUILTI! NG + DEVELO"MENT « RESEATRCH

— e

Report No. 3182

INTERFACE MESSAGE PROCESSORS FOR
THE ARPA COMPUTER NETWORK

QUARTERLY TECHNICAL REPORT No. 3
1 July 1975 to 30 September 1975

Principal Investigator: Mr. Frank E. Heart
Telephone (617) 491-1850, Ext. 470

Sponsored by:

Advanced Research Projects Agency

ARPA Order No. 2351, Amendment 15

Program Element Codes 62301E, 62706E, 62708E

Contract No. F08606-75-C-0032"
Effective Date: 1 January 1975
Expiration Date: 20 June 1976
Contract Amount: $2,384,745

Title of Work: Operation and Maintenance of the ARPANET

Submitted to:

IMP Program Manager

Range Measurements Lab.
Building 981

Patrick Air Force Base

Cocoa Beach, Florida 32925

Approved for oy
T public relegug.

D!stnbuij.eu Unliziited

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Advanced Research Projects Agency or the U.S. Government.

..‘
\
A}

i

CAMBRIDGE WASHINGTON, D.C CHICAGO HOUSTON LOS ANGELES SAN FRANCISCO

sy et

oA, B kL L

l:\‘ \

%

1 Smmm AL

Bolt Reranek and Newman Inc.

Za Z1 ¢
et F
~ INTERFACE MESSAGE PROCESSORS FOR
THE ARPA COMPUTER NETWORK , N
“' e 27 ',«' “/—_":‘935-{5;:3‘(£} ‘;A
— T

Submitted to:

IMP Program Manager

Range Measurements Lab
Building 981

Patrick Air Force Base
Cocoa Beach, Florida 32925

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and monitored by the Range
Measurements Laboratory under Contract No. F08606-75-C-0032.

P y L~ f
Pl Y 4 H
rn f’ H
(.~
S e _— = =

R TR

MR

PRECEDING PASE BLANK-HOT FILMED

Report No. 3182 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

Page

1. OVERVIEW 4 4+ + ¢ & & & o o o o o o o o o o o o o o« o« o 1
2. A METHOD FOR DETECTING INTERRUPT BUGS . . « « « « « . 8
2.1 The Problem « . . ¢ o ¢ o ¢ o o o o o o o o o o o g9

2.2 A Systematic Approach to the Problem 13

2.3 Automating the Approach . . « + ¢« + ¢« v « « « o« . 21

2.4 SUMMAYY « + o ¢ « o o o o o s o o o o o« o o o o 26

o —— — .

i

Ahanflp

e

S N

[——

PRECEDIL. PAGE BLANKSNOT FILMD

Report No. 3182 Bolt Beranek and Newman Inc.

1. OVERVIEW

This Quarterly Technical Report, Number 3, describes aspects
of our work on the ARPA Computer Network under Contract No.
FOB8606-75-C~-0032 during the third quarter of 1975, (Work
performed in 1973 and 1974 under Contract No. F08606-75-C-0027
has been reported 1in an earlier series of Quarterly Technical
Reports, numbered 1-8; and work performed from 1969 through 1972
under Contract No. DAHC-69-C-0179 has been reported in a still

earlier series of Quarterly Tecnnical Reports, numbered 1-10.)

Several INMPs were delivered during the third quarter. A 316
IMP was installed at Scott Air Force Base, An AKPA-owned 316
Satellite 1IMP was installed at Goonhilly 1in the UK and a
privately-owned 3106 Satellite LIMP was installed at Etam, West
Virginia; these two Satellite IMPs permit the initiation of
nulti-access satellite communication experiments. The IMP which
was delivered to NSA during the second quarter was installed in
the network this quarter. We also delivered the network’s first
Pluribus IMP, to SDAC, late in the third quarter. This IMP was
undergoing hardware and software shakedown at the end of the
quarter and was expected to be installed in the network on an

operational basis on the first day of the fourth quarter,

Report No. 3182 Bolt Beranek and Newman Inc.

In addition to the above, a cyclic relocation of IMPs in the
Cambridre, Massachusetts, area was carried out during the
gquarter, The intent was to permit higher bandwidth at the CCA
node. Accordingly, the CCA TIP was moved to MIT, the MIT 316 IMP

<

was noved to Harvard, and the Harvard 516 IMP was moved to CCA.

We have also been active in a number of other areas during

the quarter, as discussed below.

Security Activities. During the quarter our security

activities centered primarily on the carrying out of PLI TEMPEST
teste, refining the PLI hardware and software, and beginning
forr.:l] PLI docunentation. A complete PLI, an IMP, and extensive
test ecuipment were shipped at the beginning of the quarter to
HESSEC in Washington, D.C., wherc the TEHMPEST tests werc carried
out. These tests resulted in a generally satisfactory "bill of
health" for the PLI. Taking advantage of the availability of an
actual Key Generator (KG) at NESSEC and the insight into the PLI
operation gpained during TEMPEST tests, we ran a number of

additional teesets which flushed out some residual hardware and

software bugs. We also ran tests to conflirm our previous
estimates of PLI performance when operating with the KG. These

tests have suggested some hardware features which, if feasible,

could improve performance, The PLI equipment will be shipped

Report No. 3182 Bolt Beranck and Newman Ine,

back to BEN carly in the fourth guarter where it will be readied
for reshipment to the field. 1In the documentation area, we began
sof'tware documentation and have almost finished a functional
specification and interfacing manual which will be published as

an appendix to BBN Report 1822.

We also participated in an ARKPA-organized meeting to begin
planning an experimental program to demonstrate the feasibility
of securing a packet-switching network while maintaining nmnuch
more flexibility than is possible with the PLI, and we produced a
working document outlining an approach to such flexible packet

network scecurity.

Network Control Center Progsram. During the quarter the

Network Control Center propgram was modified to be able to handle
the situation of more than sixty-three IMPs in the network. The
program is now assembled to permit about eighty IMPs with a
variable number of Hosts (in particular more than four) per INP,
although the basic program modification is such that with only a
trivial reassembly the propram can handle many more than eighty
IHPs, During the process of modification the program was
reformatted to permit it to be assembled by our PDP~10 cross
assembler rather than cur PDP-1 cross assembler, and NCC program

development will henceforth be done on our PDP-10. This move

[
|

Report HNo. 3182 Bolt Beranek and Newman Inc.

-y

Loy

from the PDP-1 to the FDP-10 is in keeping with our general roal

of moving NCC tasks off the aging PDP-1, Also, network
throughput data collection, which was previously done on the

PDP-1 with copies sent to the PDP-10, is now done entirely on the

PDP=~10.

[y

Network Harduare M:

1

inten

]

i)
i

The third quarter was the

4
L

b

first during which BBN provided hardware maintenance directly
rather than obtaining it through a subcontract to Honeywell. Our
experience this past quarter has confirmed the wisdom of our

sWwitch to direct maintenance. In particular, July was the best

menth in network history from the point of view of hardware
malntenance; and the quarterly averare was very pgood as compared

with previous quarters,

i

Terminal TMP. During the quarter we reached a minor

milestone with regard tc TIP operation and software maintenance.
For the first time within memory (possibly ever), all TIPs in the
network are now running the same version of the TIP software
system. Not content to let things rest, we are quite far
advanced in our new Telnet implenentation for the TIP, and we are
still aiming for new Telnct operation by the beginning of next
year. Also, early in the fourth quartcr the necessary TIP

software change will be started to allow the TIP to be used when

o

Report Ho. 3182 Bolt Beranek and Newman Inc.

™,

more than sixty=-three IMPs are on the network. We also hope this

change will be done by the beginning of next year,

316 __IMP_Developnent. The 316 IMP program has undergone a

o
pet

period of consolidation this past quarter to clean up and prepare

ety

or the massive chanpe which will be implemented in the fourth

fes

guarter to permit more than sixty-three IMPs on the network.
Prior to entry into the consolidation phase, the IWP program had
remained cstable for three full months, one of the longest pericds
without chanre in network history. 1In addition to =a number of
very minor modifications, the consolidation has included
reclaiming some storage both for buffers and for future code,
implementine a cleaner pacliet relecad system, and implementine a
load/unload package (which permits the trace, statistics, and VDH
packages to be installed and removed alrost at will)., VWe are now
prepared feor the actual implementation of the
more-than-sixty-three-IMP chanre. During the third quarter we
also wrote the modification to BBN Report 1822 to cover the new
formats required by the change, and a new edition of this report
will be distributed as early as possible in the fcurth quarter.
Finally, during the third quarter we have essentially completed
the development of a version of the Very Distant Host package
which can run in extended core of an IMP or TIP so that it does

not have to occupy IMP buffer space.

e e e e i e e e s = - - r—————— e -

Report No. 3182 Bolt Beranek and Newman Inc.

Pluribus IHP, As specified 1in our contract, our efforts

with the Pluribus IMP hardwarc development had almost ceased as
of the beginning of the third quarter. We have continued to
epend effort finishinpg Pluribus documentation to add to the three
doccuments that have already been published. Two more Pluribus
documents, numbers 4 and 6, are almost done and should be
published 2arly in the fourth quarter. Documents 7 through 9 are
being compiled. Document 3 is still some way in the distance.
Also, we have spent a little time this quarter developing a

version cof tae Pluribus IMP modem interfacce which meets V.24 and

V.28

]

, In the Pluribus IMP software area, we have

[

tandard

continued to improve the program both to keep wup with 31v IMP

o
[&]

chanpes and tidy up a »rumber of loose ends of the Pluribus INP
implementation. Haturally, the actual installation the Pluribus
IMP at SBAC has forced a different mode of software developrent
than has previously been uced; as with the 316 IMP, the Fluribus
IMP software must now continue its develepment in a style which

uses very small incremental changes while always maintaining an

operational system.

Satellite IMP. During the guarter the bulk of our efforts

in the Satellite IMP area were dirccted to the installation and
beginning of field operation and maintenance of Satellite IMPs at

the Etam and Goonhilly earth stations. The Etam Jatellite IMP

m .:‘M] [Tl

g

T

Report No. 3182 Bolt Beranek and Newman Inc.

was 1installed at the end of July with ver~y little difficultv.
The Goonhilly Satellite IMP was installed in Aupust with somewhat
more difficvlty. Both systems have nuw been ojerational topgether
and with the rest of the network since officiai service began at
the beginning of September. Also, we attended a meeting of ARPA,
Western Union International (the record carrier for the U.S. side
of the satellite link), and COMSAT for the purpose of thrashing
out maintenance procedures for the satellite circuit. Finally,
we attended a meeting of the group of institutions which will
actualiy carry out the experiments involving the Satellite IMPs,

at which planning for the experiment was begun.

e e e s e e

A

—— O —

AR e

PR

Report No. 3182 Bolt Beranek and Newman Inc.

2. A METHOD FOR DETECTING INTERRUPT BUGS

Both the IMP and the TIP have required and continue to
require development and mairntenance of somewhat complicated,
interrupt-driven, real time programs. As is typical with such
programs, “interrupt bugs" or ‘"multiprogramming bugs" have
occasionally crept into the programs. Since such bugs are among
the most difficult to diagnose, and since we have (slowly but)
almost continuously had to modify our precgrams, thus providing
opportunities for bugs to oreep in, we were forced for the =sake
of self-preservation to develop a systematic method of assuring

the absence of nmultiprogramming bues.,

This systematie method has been in use for over two Vyears
and, while not perfect, has in fact caught many such bugs which
might otherwise have caused IMP and TIP prcoblems. Conseguently,
althourh "methods of autcomatic program verificaion" are a bit
outside the normal scope of our contract, we think the method has

been of sufficient direct value to network maintenance to justify

the followinpg report.

R

b T] A . — e —

(b . SRR p—

Report No. 2182 Bolt Beranek and Newman Inc.

2.1 The Problem

Multiprogramming bugs are those wnich can occur when two
processecs within a system attempt to modify a variable
simultaneously or when one process interferes with the control
structure of another by incorrectly sharing a subroutine with it.
These bugs occur in multiprocessing systems, where the
conflisting processes are truly concurrent, as well as in
m.ltiprogramming systems, where only one process can be active at
a time. A~ bug of this type is freouently very difficult to
lecate because neither process can cetect any anomaly.

1

Furt! since a failure caused by such a bug depends on the

21nore,
coincident tinmine of the conflicting processes, a failure may
occar only once a minute, once an houc¢, or even less frequently.

Also, problems often will not show up until the next time the

variable 1is vrefcrenced, whichi may ocecur long after and far

removed from the actual source of the fault,

Dijkstra and others have done much theoretical work on the
general problem of coordinating independent processes. However,
when execution speed and program size are critical factors, the
general procedures they developed are too expensive to use every
time a variable is referanced. Further, in many environments the

actual protection techniques available are fairly

et - i i — —— -

L ——] ——

Report Ho. 31862 Bolt Beranek and Newman Inc.

straightforvard. It is our belief, then, that what is needed is
not further weork on "automatie" protection schemes, but rather
techniques for identifying those portions of a program which
actually require protection, thereby allowing the remainder of
the program to be left unencumbered. Our work has focussed on
these practical problems within the context of assembly language

programming for small, real-time syctems.

We concentrate Tor the most part on interrupt-based systems
because this is the environment with which we are most familiar
and in which we have done the most analysis, Conceptually,
however, all multiprogramming systems merely simulate a

nultiproces=sing system. The primary attribute of such systems is

the reguirement for rapid response to external events,

Interrupts are the most common architecture with which such
systems are constructed. Although the techniques we have
developed are designed for interrupt-driven systems, they apply
with 1little significant .wodification to the entire cspectrum of

multiprogramming systems.,

Ae an example of a common interrupt bug, consider a system
in which there is a loop to process data and an interrupt routine
to service an input device supplying the data. The routines

communicate by means of a variable which is incremented by the

10

|

—- — R

Report No., 3182 Bolt Beranek and Newman Inc.

interrupt routine each time a datum arrives and is decremented by
the processing loop each time a datum is processed. The variable
is zero when the system is idle, indicating that there is no data
waiting to be processed. Now, let wus hypothesize that the
interrupt routine and the processing loop look something like:
INTERRUPT: SAVE ACCUMULATOR

LOAD VARIABLE

INCREMENT ACCUMULATOR

STORE INTO VARIABLE

RESTORE ACCUMULATOR

EXIT

LOQP: LOAD VARIABLFE

TEST ACCUMULATOR EQUAL TO ZERO

IFSO GOTO LOOP

DECREMENT ACCUMULATOR

STORE INTO VARIABLE

PROCESS A DATUM

GOTO LOOP
An observant systems programmer will notice that the above
routine, as siinple as it is, contains an "interrupt bug". Assume
that the variable has some vilue, n. If a datum arrives just
after the LOAD VARIABLE instruction, an interrupt will occur and
the interrupt routine will increment the variable to n+1. VWhen
the loop is resumed, the now-incorrect value of n will be
restored to the accumulator and wiil get decremented, and instead

of Eontaining n at the beginning of the next loop, the variable

will contain n=1; a datum will have been lost.

"

T e e et et b vt e poreer e S— —

I A

bbb

Report No. 3182 Bolt Beranek and Newman Inc,

One way to fix this bug is to rewrite the processing loop as
follows:
LOOP: DISABLE INTERRUPT SYSTEM
LOAD VARIABLE
TEST ACCUMULATOR EQUAL TO ZERO
IFS50 GOTO ENAB
DECREMENT ACCUMULATOR
STORE INTO VARIABLE
ENABLE INTERRUPT SYSTEM
PROCESS A DATUM (we assume no conflict here)
GOTO LOOP
ENAB: ENABLE INTERRUPT SYSTEM
GOTO LOGOP
The variable is being shared between two routines, and fer a
small pertion of the time its value is "incorrect": from the
LOAD until the STORE. Durine this period, the interrupt routine
must be prevented from runnine and using the incorreect value of

the variable, and the =simplest way to do this is Just to disable

the entire interrupt system, preventing all interrupts.

A fairly simple rule surgests itself: if any routine

g

modifies a shared variable, it must prevent any other routine
from using the variable while it is being changed. Tuis rule is

the crux of interrupt programming.,

s

L] T — Jr—

Ay

i
i

Report No. 3182 Bolt Beranck and Newman Inc.

2.2 A Systematic Approach to the Problem

The first step in understanding a system is to determine its
interrupt structure, which usually follows from an analysis of
the desired response characteristics of the system and its I/0
devices, This will result in a directed rraph in which the nodes
correspond to the interrupt routines and the arcs indicate which
routines shculd not be interrupted by which others. for typical
computers, the interrupt system will constrain this structure to
be a simple linear ordering of routines by priority; in others it
is possible to have a more complex structure., (In a linear
structure, if B cannot interrupt A and C cannot interrupt B, then
C ecannot int.rrupt A, Some computer architectures would permit C

to interrupt A unless the software explicitly prohibits it.)

In cur particular case, although the computer in fact poses
nce constraints, we chose to implement a linear system. There are
two primary reasons for this choice. First, more complicated
structures offer little, if any, advantage over a linear system,
Second, the interrelationships of the interrupt routines become
much more complicated when structure is non=linear. Except as
noted, for the remainder of this report we will deal exclusively
with linear interrupt structures. The approaches and analyses

can be carried over to more complicated structures fairly easily,

e e e e et et g e . T e et et .. e e S e st e

A e . .

Ay

-

3

—— W—— i——

—— —— A—

Report No. 3182 Bolt Beranek and Newman Inc,

but in doing so the rules we describe will rapidly become very

difficult.

The next step is to identify the system’s interrupt
routines. This identification 1is wusually a simple matter of
starting at each interrupt entrance and tracing out the control
paths until the interrupt exits are reached. HNon-reentrant
shared code and subroutines are treated as though they were
variables; that 1is, the techniqu~s described below for dealing
with variables are applied to determine an 'effective interrupt
level" for the code or subroutine, and then the analysis proceeds
as thourh the code were actually a part of the level thus
determined, the procedure repeated iteratively until all of the

code in the svstem has been associated with an interrupt.

For each variable in the system, the highest priority
routine which references it may do so with impunity. However,
all lower routines muct take care that they are not interrupted
while medifying the variable in question. If the lower routines
lock out interrupts at (and implicitly below) the level of the

highest routine, they will be assured error-free access to the

variable. ¥ Thus, for each variable we must determine an

% It is primarily the absence of this property that makes
non-linear structures dilficult to deal with.

14

IR ————-

R

—— — — T R R

Report No. 3182 Bolt Beranck and Newman Inc.

"effective interrupt level", the level at which interrupts must
be disabled (either implicitly by being the interrupt routine at
that level or explicitly in lower levels) to pguarantee safe
access. To do this, examine each such element and deternmine
which routines share it. The "highest priority" routine is the
one which cannot be interrupted by any of the other routines

sharing the element; 1its level is assigned to the element.

In an existing system, locating an interrupt bug probably

require

some degree of idnsight inte the structure of the

€]

program. Nonetheless, by metnodical application of the above

-

rules, it is poscible to verify the structure of an entire systen

3
H

and discover any bur

&)

present in it. In fact, for some bugs this

may be the fastest wav to locate them,

If we number the interrupt levels so that a given level can
be interrupted by all lower-numbered levels and implicitly
inhibits all higher-numbered levels, then the effective (or
"hardware") levels we have just assigned are simply the lowest
numbered levels which wuse each element. Now, when any higher
numhered routine uses an element, it must at least disable
interrupts up to that lJevel., Notice that what the routine is

actually doing is making itself appear to the interrupt system as

15

R

I

AP

Report No. 3182 Bolt Beranck and Newman Inc.

though it were the lower numbered interrupt. Thus, one can view
the =situation as being that the lower priority rcutine has,

through software, "become" a higher priority routine. We refer

b

to this procedure as making the routine modify its "software"

-

P

interrupt leavel.

!

The hardware level of a routine reflects which routines it

and the software level indicates which routines
from _interpupting it. At the point of the
¥, these levels are the same, and a routine can

neither alter its hardware level nor make its software level

higher than 1its hardware level., It can, however, decrease and
4 H H

]

: necessary to insure safe acces=s to

o
[=9

ot
&
4]
3
D
[
D
@
=

restore ite so

L

any variables it might need.
Our basic approach consists of a mechanism which simply

maintaine and displays the hardware and software levels for each
line of code and variable in the system. With this information
as a puide, the propgrammer can proceced on his own to resolve any
conflicts that are pointed out. The lgvel information 1is
inserted, modified and acted upon in a completely manual fashion;
it 1= less an augmentation of our programming system than it is a

documentation technique. MNonetheless, it has proven valuable for
1

several reasons: 1) the rules are quite simple and

16

Report No. 3182 Bolt Beranek and Newman Inc.
deterministic, and they lead to a high level of program
correctness when properly applied; 2) the documentation aspect
of the system 1is, 1in itself, valuable; and 3) forcing the
programmer to be aware of nmultiprogramming issues improves the
i overall reliability of his progranms,
There are six macros to declare the hardware and software
l levels of the program. 1In addition to setting the levels, the
! macros perform various consistency checks. The first three
' assemble appropriate code to achieve the desired effect upon the
[interrupt systenm:
! 1) INT the interrupt entrance at level N,
. 2) INH terrupts at level K.
3) ENE he interrupt system to the current hardware
! lE\f’el.
! Because prosrams have transzrers and subroutine calls and
B ncn-conticuous fragments of code, there are analogs to INT, INH
l and ENB which effect the declaration for the purposes of checking
but presume that the interrupt system is already at the declared
! level, and thus do not generate any cnde!
4) LEV N declares the code to be hardware level N. Thiz is
I an implicit INI
5) LCK N declares the code t» be at software level N, This
is an implicit IKH,
] 6) RET declares the code s software level to be equal to its
hardware level, This is an implicit ENB.
l 17

AN

My

|

Ne. 3182 Bolt Beranek and Newman Inc.

Each word of code that is assembled and shown in the listing
is accompanied by its hardware level, and also by its software
level if different., Variables are indicated with a V and the
determination of their effective levels and the verification of
their correct use is done manually, or otherwise, distinctly from
the assembly process. For example, some levels that have been

compiled for our IMP program include:

M2l = 0 Modem=-to-IMP
2y = 2 IHP-to=-Modem
I2H = 3 IMP-to-Host
HZ2T = 4 Host-to-IMP
T.0 = § Timeout
TSK = 6 Task
BCK = 7 Bzekrround
A sample use of these levels (in TASK) might be:
6 LDA THIS /GET THIS PACKET
6 NH Iz2! /LOCK QUT I2H
6 2 STh EMQ %I /ADD NEW PACKET TO GURUE
6 2 STA EMQ X /EMQ = END OF MODEM QUEUE
6 2 ENB /COME BACK TO TASK LEVEL
) JMP FOO

The effective levels for THIS and EMQ must be"known" (for
example, by reference to a previous assembly). THIS is on level

1 temporary in Task. EMQ is on level 2; it is shared by

Lo
[y
o+
[y
]
"

I2H, Timeout and Task.

The INH-ENE mechanism is somewhat simplistic; in practice,

things can be quite a bit more complicated. The principles

18

—— I ——— A AN r—

— —— ——

Report No. 3182 Bolt Beranek and Newman Inc.

always remain the same, but it is not always clear just how to
prevent a given routine from running. There can be ssorted
interlocks in the software: it might be that a particular
interrupt cannot occur (for example, because the device is known
to be inactive), or it might be that the higher priority routine
cannot take a path which accesses the variable in question (for
example, in setting up the parameters of a datum before a flag
indicating that there is a datum has been set). However, once
the key places in the system are pointed out, it is almost always
easy to implement the controls or verify that they arc already

present.

In systems with more complicated interrupt structures,
applying the rules becomes correspondingly more difficult,
Konetheless, even the most intractable of structures will vield
to the =steadyvhanded application of the rules. We give three
examples. First, consider two user-level jobs within a
timesharing system. The timesharing system itself is probably a
complicated interrupt-driven system, but let wuc direct our
attention only to the two user joba., The nature of a timesharing
system 1is that at any point a user job can be interrupted,
"swapped ocut", and another user job run in its place. User jobs

typically have no expliecit way to "inhibit" one another, So if

two jobz wish to communicate through some shared structure, be it

|

—— A——

Report No. 3182 Bolt Beranek and Newman Inc.

shared memory or a shared disk file, considerable care must be
given to prevent interrupt bugs from cropping up. Again, the
mechanisms chosen will vary widely, but the basic rules can be

used again and again to pinpoint those portiocns of a program

which require protection.

Second, consider two processes (for instance, coroutines)

that both run at background level, which suspend and resume

e

basis (this

n

s, in essence, the heart of a

o]
o1
@]
¢
m
147]
w
J
o
e]
o]
=]
w
(o]
=3
0]
(2

—

polling system). f these two processes share a common resource

the follewing kind of bug can ocecur:

A B
LOAD X LOAD X
. 5o o
(suspend processing) (suspend processing)
(resume processing) (resume processing)
. e
STORE X STORE X

Because B can run between the time A suspends and resumes and
vice versa, either’s STORE X could be an error if the other has
run and chanped X. Again, the problem is that a routine modifies
a shared variable in an "interruptable" way. A systematic
solution to this problem can also be developed based on the
assignment of local levels within the main hardware level to all
routines and variables and the use of the rule that a routine

implicitly inhibits all lower priority levels and opnly its own

20

Report No. 3182 Bolt Beranek and Hewman Inc.

—

the other sublevels at its

[}

sublevel -- each sublevel consider

level as being "higher" than it.

Qur third example of a situation requiring an extension to

A

our systematic approach is that of a true multiprocessor, Here
the problem of concurrent access to shared resources 1is present
at all times. Protection in such an environment can be eftected
by the well-known uninterruptatle "test and set" instruction,
However, now a new type of problem arises: when routines require
cevepal "looks" at once in order to proceed, deadlocks can occur
if all routines do not take and release locks in & coordinated
way. An extension to our approach is of value here: if the
locks are assigned levels and routines are constrained never to
take a lock with a lower number than one it already as (i.e.,
locks must be taken in strictly ascending order), our system can
be expanded to provide the necessary sequencing information to

ring deadlocks.

1]

allow the avoidance of lock-ord

H

o

[

2.3 Automating the Approach

In this section we discuss a means of raking our approach
automatic. The procedure we are going to describe is a
naookbook" for assigning levels anrd verifying that there are no
bugs. Much of this work could be done by a program, and the

procedure has been orpanized with that in mind., However, we have

not actually implemented this automati= approach,

21

ko

—— B

(WS}
—
o0
[a®)

Report No. Bolt Beranek and Newman Ine.

For the first step, we identify and assipgn hardware levels
to all of the executable code in the system. We start at the
actual hardware interrupt entrances and assisn to them the actual
level of the interrupt they represent. We the- trace through the
code in the natural way, assigning the starting hardware level to
all code (not 1in subroutines) ‘'reachable" from the interrupt
entrances (an instruction which occasionally skips assigns its

level to the next two locations, a transfer assigns its level to

its effective address(es), etc.). A subroutine call propagates
its level Lo all of its poczeible exits,

With all of the main line code dealt with, we next examine
each subroutine to see if ull of idits ealls have had their
hardware levels assigned. If so, we assign the mininmun of the

calling hardware levels as the hardware level of the entry to the
subroutine. We then assign hardware levels to the rest of the
code in the subroutine, and then loop back to find other

subroutines all of whose calls have had their levels assigned,

This procedure should result in every line of executable
code having a hardware level acsipgned to it., If some code has
remained unassigned, then it is not ever executed. If there has
been an attempt to assign to some code several hardware levels,

there is probably a bug in the control structure.

JrT—

e

i,

—— -

T H—— —— T

o0
AW

Bolt Beranelk and Newman Inc.

Next we assipgn hardware levels to the data and variables of
the system. First, all of the read-only variables (i.e.,
constants) are located and marked as such. All other variables

are assipned the hardware level of the minimum of their

it

referents. This should ascign a hardware level to all variables,
and every used word in the program, both code and data, will now

have a hardware level azssigned to it.

Now we assign software levels to the code. Each interrupt
entrance is assigned a software level equal to its hardware

level, Then, feor 2ll instructions which are neither at the

which affect the

]
0]

returns of subroutines ner instruction

{

interrupt system (e.f., LOCK or UHLOCH) we propapgate the software
levels azs we did the hardware levels, The level of the
instruction following one which affects the interrupt system
should simply refleat whatever was done to the interrupt systenm,
and then propagation can continue, Suvbroutines are a little more

complicated.

We initially assien to each subroutine entrance a level of
zeroc and propagate that assignment through the subroutine to
determine a tentative exiting software level for each exit fron
the subroutine. Then, as we encounter a subroutine eall

instruction (eithker in the main code or in another subroutine) we

e e L e s e = - - s

LU T——

T — — T T S

P —-

Report No. 3182 Bolt Beranek and Newman Inc.

compare the software level of the call and the tentative software
level of the subroutine entrance. If the «calling level is

lower-numbered than the subroutine level, each place that *he
subroutine could exit to is assigned the software level of the
associated exit. If the calling level is higher-numbered than
the subroutine level, the subroutine entrance is reassigned with
the level of the call and the new levcl is propagated through the
subroutine (which may entail cherees in other subroutines), If
the software level of apy exit from the subroutine is changed,
then every call to that subroutine thus far processed rmust ha.e

the affected exit reassipg:

3

ed and this new level must he

-

propagated to the succeceding instructions. Since such a chanre
can only ipecrease an instruction’s software level nunmber (and
there are only a finite number of levels), this procedure will
eventually terminate. When it does terninate, each subroutine
will have been assigned the maximum of the software levels of all

of ite «calls, and the effects of such an assignment will have

been propagated back through the calling sequences.

At this point, all executable code should have both hardware
and software levels assigned to it., If, at any point, the system
has attermpted to assipn two different software levels to a word
(except as a result of reassigning a subroutine), it assigns the
mazimum. If, at any point, it has attempted to assign a software

level larper than the hardware level, then there is a bug.

24

Qe

-

Report No. 3182 Bolt Beranck and Newman Inc.
#

Now we are ready to verify that all of the data references

are bug-free. First, many types of data refcrences are

"interrnpt-proof"; e.g., an isolated LOAD or STORE reference,
"Darnperous” eferences to variables must be checked, however,
Fnr eaech such reference, the scope of the reference must be

-

identified. Within each such scope, determine the larrest

oftware level occurring anywhere within it (not forgetting to

trace through any subroutines called). Then verify that the
hardware level assigned to it 1is equal to the derived
refereftice-zoftware-level, Any violation 1= an errcr: if the
hardware level 1s less than the software level, then the

reference 1is not sufficiently locked to insure a pup=iired
reference; 1f the hardware level is greater than the software
level, then the reference 1is excessively locked and perhaps
system performance ca# be improved by dncreasing the software

level of the reference.

This procedure chould verify that there are no interrupt
bugsz in the control or data structures of a progran. The

ambiguities (e.g., in determining ‘"dangerous" versus "safe"

references) can usually be eliminated by the cooperation of the
programmer; for example, the programmer could Just use the

op-code SS5TORE (which would assemble in the same way as a STORE)

to indicate a "safe" store, or he could use a different mnemenic

e e S S _

——— [

:
H

-
&)
>
o
"3
riod
o
-
e
e
o
™

Bolt Beranek and Newman Inc.

for potentially skipping instructions which are known, in the

context, never or always to skip,

2.4 Qumgapy

Our approach has been threefold: 1) we

have analyzed

exactly what properties and constructs within a system could give

rise to nultiprogramming conflicts; 2) we have written macros

for our assembler which note the various protection structures

deviations (i.e., protections where nonce
and porticns which require additional protection

eroundunrl fren which a more comple

=54
i
«3
]
.
o
o]
et
3
=y
[ig¥]
L
b

Finally we have extended the theoretical
]

multiprogramming stru

D')
-+
byl
]
iy}
8]
or
o5
[
s
(]
Juss
g
o
"3
ot
)
[1¥]
4]
»]
=)

M

Y E

multiprocezsing and polling systems, can be hand

designed the basis of an automatic progrs ming syste
allow the writing of Wbltlﬁ"”?PdL?lP? conflici=Ffree
minimal unnecesszary vverhead., The rules, althcugh

incorporate into an assembly larguage, could easil

in an apprepriate higher level language,

“t

RPN
/TC=-2 wWOTKLD

We deseribed this worlk at the IFIP

o
-3
3

oftware for Hinicomputers at Lake Balaton, H

are needed,
); ana 3) we

te and nmore

basis ¢f cur

ctures, e.g.,

led. We have
m whiech would
programs with
difficult to

y be included

£ £ nE
volil erence

ungary; and a

‘o

Report No. 3182

-

written description of the work is to appear in

by North-lolland.,

27

d

book

Bolt Beranek and Newman Inc.

published

\
!

- b ,uvn\ Clas i ation — S
DOCUMEHT CONTROL DATA-R&D
exesuerdy e foanoaba atron of Uthe] Iaefs oF aheotrac e anade iy annolation mast e entered when the overatl popatt is v b aifivdy
TOOMIGING TiRG AC TiVely (L etpoigle auifior)) Qi HEVORT SLEUKITY L ASSIE A TION

Unclassified

Bolt Beranck and Newman Inc,
~ 18 Moulton Strect
ridge, MA 02138

2h. GHOUD

mvl

T GEDGRT TITLE

QUARTERLY TECHNICAL REPORT NO, 3 INTERFACE MESSAGE PROCESSORS

4 BLSCRIBTIVE NOTES (Type of report and, inclusive dates)
.) -
1 July 1975 to 30 September 1975
5 oAy f”f)"'(i.:T(f’f\lﬂv.ml" middin inittal, 185t nome)
i = > o L 1
Belt Beranek and Kewman Inc,
& REPORY DATL o Ja. TOT1AL MO GF PAGEES ., HO. OF REFS B
e X of
October 1975 27)
B8 CONTRALCT Oft GHANT N0 S, ORIGINATOR'S REPSHT NUMEBE RIS)

F08606-75-C-0032
bk, FROUEL T NO

Report No, 3182

T, @h. OTHER REFPORT NOISI (Any other numbers that may be assigned —
thiz teport)

5 2 Ls x':‘:-‘.“a"hn‘u’: MHLITASRY AL TiyiTY

3 ARSTRALD T

¥§u:ARPA cemputer network is a packet-switching store-and-forward communications
system designed for use by computers and computer termirals. This Quarterly
Technical Report briefly describes various aspects of network operation and
maintenance (installation of IMPs, security activitics, Network Control Center
program modifications, network hardware maintenance, and developments related

to the Terminal IMP, 316 IMP, Pluribus IMP, and Satellite IMP) and presents in
detail a systematic method for detecting and preventing 1nterrupt*’or multi-
programming'“bugs,

(FAGE 1) _ 3
_UNCLASSIFIED

T Security Classili bt

BB

T— — [—" TN M

TH—

UNCLASSTFTED

Secunity Classtiication

KEY woaDs

LinK A Linwg B

HOLYT

Computers and Communication
Storc and Forward Communication
ARPA Computer Network
Packets

Packet-switching

Interface Message Processor
IMP

Terminal IMP

TIp

Pluribus

Satellite IMP

Access Control

Accountinrg

Private Line Interface

PLI

Broadcast Communications
Acknowledgment
Retransmission

NCC

Multiprogramming

Interrupts

Program Verification

DD 9. 1473 (eacx)

SAH 10l uni.ny by

SORRTNG

UNCLASSIFIED

Security Classification

